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DEFINITIONS OF CONCEPTS AND IMPRECISION

MAREK Z. REFORMAT1,2, RONALD R. YAGER3,4, JESSE X. CHEN1

Abstract. Knowledge graphs become an important form of representing data and information.
Their intrinsic ability to express semantics via relations enables development of novel methods
of processing data and building data models.

In the paper, we propose a methodology for generating definitions of concepts and construct-
ing their hierarchy. It is a fully data-driven process that uses information about multiple entities
represented in a form of a knowledge graph. In this work, we state that a concept is defined via
relations between the concept and other concepts. We perform a thorough analysis of relations
and determine their levels of importance and degrees of their contributions to the definitions.
This allows us to include impression reflecting the dependence of the construction process on
the context in which it is performed – a limited amount of available data in our case.

We provide details of the proposed approach, and illustrate its performance presenting a
case study using a set of facts from dbpedia.org. In the study, we construct a structure of
concepts and investigate how importance of relations between them changes when levels of
concept abstractions change.

Keywords: knowledge representation, fuzzy logic, logic of vagueness, classification and discrim-
ination, cluster analysis, learning and adaptive systems in artificial intelligence.

AMS Subject Classification: 68T30, 03B52, 62H30, 68T05.

1. Introduction

One of the most important contributions of the Semantic Web concept [1] is the Resource
Description Framework (RDF) [13]. This framework is a recommended format of representing
data [2]. Its fundamental idea is to represent each piece of data as a triple: <subject-property-
object>, where the subject is an entity being described, the object is an entity describing
the subject, and the property is a “connection” between the subject and object. In other
words, the property-object is a description of the subject. For example, London is a city is a
triple with London as its subject, is a its property, and city its object. In general, a subject

of one triple can be an object of another triple, and vice versa. This results in a network of
interconnected triples.

The network of triples constitutes an environment suitable for developing new methods for
analyzing data, and converting it into more structured information. We imply that this ability
is essential to build more semantically oriented data models. Such models would lead to a
better understating of new and unknown data, increased inference capabilities, and creation of
knowledge.

In this paper, we propose a methodology for building a hierarchy of concepts, their gener-
alization, and determination of imprecision associated with the derived definitions of concepts.
Each concept definition is seen as a collection of features that define a given concept. The
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features, on the other hand, are determined by relations between concepts. A detailed analysis
of relations existing between entities of clusters is performed to determine features in a form
concept-relation-concept . They constitute an essential component of concept definitions.
Fuzziness is used to realistically represent relations between multiple concepts. It expresses the
variance in importance of relations that can be relevant for concept definitions to a different
degree [10, 11].

The overview of the main contribution of the paper, i.e., the concept construction process, is
presented in Section 2. The individual steps of the process are:

• Constructing concept prototypes, Section 3. The concept prototypes are identified via
clustering RDF-based data. Although RDF-based data is equipped with properties in-
dicating its type and subject, building concepts based on similarity of entities contained
in the data provides a number of benefits. This process mimics a data-driven and
experience-based learning, leads to construction of an extensional-based hierarchy of
concept, and allows to determine degrees of membership of entities to the derived con-
cepts.

• Determining names and degrees of membership of entities to concept prototypes, Section
4. The entities that constitute a concept contribute to its name. A list of common labels
that describe a concept is built. At the same time, not all entities equally “fit” a definition
of concept. A very simple method is presented to determine a degree to which an entity
belongs to a given concept prototype.

• Adjusting strength of connections between concept prototypes, and converting them
into concept definitions, Section 5. Entities that belong to a concept are processes from
the perspective of their connections to other concepts. In such a way we are able to
determine representative and generic connections between concepts.

The paper contains a realistic example. More than 50,000 RDF triples have been collected
from dbpedia.org and processed. Some of the constructed definitions of concepts are presented
in Section 6.

2. Construction of concepts with imprecision: overview

The proposed process of extracting definitions of concepts from data is solely based on pro-
cessing and analysing RDF descriptions of entities. RDF triples that constitute the descriptions
are compared, and levels of similarities between them are determined. They are clustered and
the resulting hierarchy of clusters is treated as a structure of concept prototypes. These proto-
types are further analyzed and degrees of strength of relations between them are determined.
This results in definitions of concepts equipped with imprecision. To summarize, the definitions
of concepts are determined by entities that belong to them to a degree, and by relations of
different importance existing between.

2.1. Descriptions of entities with RDF. A single RDF-triple<subject-property-object>
can be perceived as a feature of an entity identified by the subject. In other words, each single
triple is a feature of its subject. Multiple triples with the same subject constitute a description
of a given entity. A simple illustration of this is shown in Fig. 1(a). It is a description of London.
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Mayor of London

leaderTitle
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(a) (b)

Figure 1. (a) of London with one of its features – relation ⟨London− leaderT itle−MayorOfLondon⟩ shown in

bold; and of a few entities: London, Edinburgh, France, Japan, United Kingdom and United States all

interconnected.

Quite often a subject and an object of one triple can be involved in multiple other triples, i..e,
they can be objects or subjects of descriptions of other entities. In such a case, multiple entity
descriptions can share features. Such interconnected triples constitute a network of interleaving
descriptions of entities, Fig. 1(b).

Due to the fact that everything is connected to everything, we can state that numerous
entities share features among themselves. In such a case, comparison of entities is equivalent to
comparison of their features, i.e., comparison of RDF triples representing the features. This idea
is a pivotal aspect of the approach described here for construction of definitions of concepts. It
enables categorization, incremental updates, as well as establishing degrees of belonging entities
to concepts and a strength of relations between them.

2.2. RDF Clusters: construction and characterization. Identification of clusters starts
with constructing a similarity matrix. Once a set of triples (RDF descriptions of entities) is
obtained, values of similarity are determined for all pairs of RDF descriptions. Such created
similarity matrix is an input to an aggregative clustering algorithm. Its result is a hierarchy of
clusters (groups of RDF entity descriptions) with the most specific clusters at the bottom, and
the most abstract one (one that contains everything) at the top (Section 3).

The next phase is augmenting the obtained clusters which are treated as concept prototypes.
Each of them is labeled with a set of features common among all RDF entity descriptions that
belong to the same prototype. Elements of the similarity matrix are used to determine the most
characteristic – representative – entity for each concept. Degrees of membership of each entity
to its concept are also calculated based on the similarity matrix (Section 4).

2.3. Definitions of concepts and imprecision. The above-presented processes of clustering
and naming is as an initial phase of constructing definitions of concepts with imprecision.

A thorough analysis of concept prototypes, i.e., RDF descriptions of entities that belong to
them, is the counter-stone of the process. The principle applied here is based on the fact that a
definition of concept is built based on two elements: relations between the concept being defined
and other concepts; and the other concepts themselves.

Let us provide a simple example: if we consider a concept of car – it is composed of other
concepts, such as, engine, body, wheels as well as air conditioning or heated steering wheel. Yet,
some of these concepts are essential for a car, while some are more like a luxury features, or
gadgets. Based on this, we can state that relations between a car and its components are of
different importance/strength.

To construct definitions of concepts based on this idea, we identify all concepts that ‘con-
tribute’ to the concept definition as well as all connections between the concept being defined
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and other concepts. We introduce levels of imprecision associated with degrees of contribu-
tions of different concepts to the definition, and strength of relationships between them and the
defined concept (Section 5).

3. Clustering of entity descriptions

All interconnected RDF descriptions of entities constitute a graph, and a graph segmentation
process could be used to identify groups of highly interconnected – similar – nodes [3, 4, 8, 12].
However, entities – nodes – of the RDF graph play different roles. Some of them are subjects
of RDF triples (descriptions), and we will call them defined entities, while some are just objects
of RDF triples, we will call them defining entities. All nodes which play only the role of
defining entities should not be involved in the clustering process. Therefore, instead of graph
segmentation methods we use an agglomerative hierarchical clustering method that identify
nodes of the graph that should be clustered, and the ones that should be excluded from this
process.

3.1. Similarity of RDF entities. The agglomerative clustering requires a single similarity
matrix. The similarity matrix is built with entities as rows and columns. The similarity between
entities is calculated using a feature-based similarity measure that resembles the Jaccard’s index
[7].

In the proposed approach, a similarity value between two defined entities is determined by
the number of common features. In the case of RDF entity descriptions, it nicely converts into
checking how many defining entities they shared. The idea is presented in Fig.2. The defined
entities Edinburgh and London share a number of defining entities, and some of these entities
are connected to the defined entities with the same property (black circles in Fig.2).

London

Edinburgh 

- same property 

Figure 2. Similarity of RDF-stars: based on shared objects connected to the defined entities with the same

properties.

In general, a number of different comparison scenarios can be identified. It depends on
interpretation of the term ‘entities they share’. The possible scenarios are:

• identical properties and identical objects;
• identical properties and similar objects;
• similar properties and identical objects;
• similar properties and similar objects;

For details, please see [7]. The similarity assessment process used in the paper follows the first
scenario.



18 TWMS J. PURE APPL. MATH., V.12, N.1, SPECIAL ISSUE, 2021

3.2. Similarity matrix and clustering. A similarity matrix for a set of RDF entity descrip-
tions (defined entities) constructed using the similarity evaluation technique presented in the
previous subsection is used for hierarchical clustering. The clusters are created via an aggre-
gation process in a bottom-up approach. Two clusters of a lower level are merged to create a
cluster at a higher level.

At the beginning each RDF entity description is considered as a one-element cluster. All
aggregation decisions are made based on a distance between clusters calculated using an extended
Ward’s minimum variance measure [9]. This measure takes into account heterogeneity between
clusters and homogeneity within clusters. The distances are calculated based on entries from
the modified similarity matrix. The modified similarity matrix is de facto a distance matrix
created from subtracting the similarity values from a constant equal to the highest similarity
value plus epsilon. The two clusters with the smallest distance are merged to become a new
cluster. Distances (Ward’s measures) between the new cluster and the remaining clusters are
calculated. This agglomeration process is repeated until only a single cluster is left.

3.3. Running example: Clustering. The described approach to construct categories is il-
lustrated with a simple running example. The data used here is presented in Fig.3. The part
(a) is a visualization of six entities – their RDF-descriptions – that constitute an input to the
algorithm. They are: London, Edinburgh, United Kingdom, France, Japan, and United States.
The part (b) of the figure, shows the clustering results in the form of the dendogram.

France

London

Edinburgh 

United States

United Kingdom

Japan

France

London

Edinburgh 

United States

United Kingdom

Japan

(a) (b)
Figure 3. Six entities used for the running example: RDF-stars (a), the dendogram of clustering results (b).

4. From clusters to concepts

4.1. RDF properties and concept naming. The clustering algorithm operates on defined
entities. Once the clusters are defined, we put together all entities. As a result, clusters contain
both defined entities and defining entities.

We ‘treat’ each cluster as a concept prototype. We label it by a set of names representing
features common to all entities that belong to a concept prototype. This is accomplished via
taking into account two properties and analyzing all RDF descriptions in a given cluster:

• <subject-dcterm:subject-object>,
• <subject-rdf:type-object>.

We identify all objects that are common among all triples with defined entities in a single
cluster. These objects become labels/names of the concept prototype.

We perform this process for all concepts. We start at the top – the most general concept, and
go further (deeper) into the hierarchy adding more labels to each concept at the following level.
The concepts at the bottom are the most specific, they have the largest number of labels.
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4.2. Concepts, entities, and their membership. So far, we have treated categories as crisp
sets – all RDF entity descriptions fully belong to the concept prototypes. However, when we
look closer and inspect values of similarity between members of concepts we see that there are
some dissimilarity between entities of the same concept prototype. Therefore, we determine a
degree of belonging of a given entity to its concept.

This task starts with identification of the centres of concepts. We extract entries from the
similarity matrix that are associated with entities from a given concept, and identify a single
entity that has the largest degree of commonality with other entities in the concept. Let Ci be
a concept with N entities, and let ek represents the k-th entity. Its conformance, confek , to all
other entities from this concept is:

confek =

N−1∑
m=1,m ̸=k

sim(ek, em)

where sim(·, ·) is an appropriate entry from the similarity matrix. Then the centre is:

centerID = argmax
n=1...N

(confen)

We treat this entity as the most representative entity of the concept, and make it its centre.
Once the centre is determined, we used its conformance level as a reference and compare it with
conformance values of other entities in the concept:

µCi(ek) =
confek

confecenterID

(1)

In such a way, we are able to determine degrees of membership of entities to the concepts.

4.3. Running Example: naming and membership degrees. Now, we name the concept
prototypes identified in our running example, Section 3.3, and assign membership values to
their entities. The results are shown in Table 1. It contains labels associated with each concept.
Please note that the cluster C1 is labeled with all labels of its predecessors in the hierarchy,
i.e., labels of concepts C5 and C4. The values of membership of entities to concepts are given
besides entities’ names.

Table 1. Running example: naming and membership values for identified concepts.

C5:
Thing, Feature, Place, Populated Place, Administrative District, Physical Entity
Region, YagoGeoEntity, Location Underspecified
France(0.95), UK(1.00), Japan(0.88), US(0.86), London(0.69), Edinburgh(0.67)

C4:
Member states of the United Nations, G20 nations
Liberal democracies, G8 nations
France(1.00), UK(1.00), Japan(0.91), US(0.86)

C1:
Member states of the EU C3:

Countries in Europe Countries C2:
Western Europe Bordering British capitals

Member states of NATO ThePacific Capitals in Europe
Countries bordering the Atlantic Ocean Settlement, City

France(1.00), UK(1.00) Japan(1.00), US(1.00) London(1.00), Edinburgh(1.00)
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5. Generalization: construction of concept definitions

The proposed methodology for constructing definitions of concepts is considered as a process
of generalization. It is driven by analysis of connections between entities that belong to different
concept prototypes. Below, we present a description of the methodology using an idealized
situation, and then focus on a realistic setting that leads to inclusion of imprecision in the
obtained definitions of concepts.

5.1. Concept definitions and relations. In a nutshell, a process of generalization follows a
simple idea: each concept contains a number of entities, and each entity of a given concept, let
us say Ci, is linked via relations to entities of other concepts. If multiple entities of the Ci are
connected to entities of the same concept Cj via the same property pV then we imply there is
a general connection between these concepts, i.e., there is a triple:

⟨concept : Ci − property : pV − concept : Cj⟩.
Let us analyze such a situation presented in Fig.4.

px

px

px

px

pz

pv
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pvpvpv

pz
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pv

Ci

Cj

Ck
px

py

Cp

Cq

py

Figure 4. Connections between Ci and other concept: idealized case.

As we can see, the concept Ci contains a number of entities which are connected via properties
pV , pX , pY and pZ to entities that belong to other concepts. Let us concentrate on two properties
pV and pX . They connect entities of Ci to entities of Cj and Ck. All connections between Ci and
Cj have the property pV , so we can say that Cj together with pV is a feature of Ci. Following
the same reasoning, we have another feature of Ci that is ‘made of’ the concept Ck with the
property pX .

If such a process is performed for all properties of entities of the Ci, a set of features of Ci

is determined. The final result is an RDF-like representation of the definition of Ci. In other
words, we can say that, in our simple example, Ci is defined via triples:

⟨Ci, pV , Cj⟩, ⟨Ci, px, Ck⟩, ⟨Ci, pz, Cp⟩, ⟨Ci, py, Cq⟩.
Further, we say that the features of Ci are composed of other concepts together with associated
with them properties, Fig.5.

pv
Ci
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Ck
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pz

Cp

pyCq

Figure 5. Result of generalization – definition of concept Ci: idealized case.

The presented above scenario is an idealized one. In reality, we deal with two scenarios:
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• entities of a given concept are connected with entities of another concept via a number
of different properties;

• a given concept is connected with other concepts via the same property.

Such a setting is shown in Fig.6. Entities of Ci are connected to entities of another concept
using different properties: Ci is connected with Cj with pV and pY . Additionally, the same
property is linked with connections between Ci and other concepts: the property pX connects
Ci also with Ck and Cq.

This observation leads to a premise that features that compose a concept definition should
be ‘weighted’, i.e., we should be aware of the fact that there is some level of imprecision in a
statement that a given feature is a part of a definition of concept.
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Figure 6. Connections Ci and other concept-clusters: realistic case.

5.2. Imprecision as fuzziness of relations. In reality, entities of one concept can be con-
nected – via the same property – to entities that belong to a number of different concepts.
Additionally, the clustering process based on similarity matrix can lead to a situation where a
number of entities of the considered concept are connected to exactly the same entity of another
concept. This is presented in Fig.5 for the property pV . Please note, the figure shows only
connections with the property pV . Also, it is quite possible that the entities that belong to two
different concepts are connected via other properties. As we can see, the property pV connects
the entities of Ci with the entities that belong to three concepts Cj , Ck and Cn. At same time,
there is a possibility that these concepts have entities that are not connected to Ci via pV .

In general, we could say that based on the available data that is used for the clustering
process, there are entities of the concept Ci which do have connections to other entities of
Cj , Ck and Cn via properties different then pV , and there are entities of Cj , Ck and Cn that
are connected to entities of other concepts via pV . Based on these two facts we determine a
measure of prominence. It represents a degree to which a given feature/property contribute to
the definition of a concept. The value of prominence is calculated using two other measures:
dominance and completeness.

The dominance is used to represent popularity of a given property among entities of the
concept under consideration. In a nutshell, such a measure would be calculated in the following
way, i.e., for two concepts Ci and Cj the dominance of pV is equal to:

dominanceCi→Cj (pV ) =
#Ci entities connected to Cj via pV

#Ci entities

The value of dominance of 1.0 would indicate that all entities of Ci are connected to Cj via
the property pV . However, as we know not all entities ‘fully’ belong to a given concept – each
entity belongs to a concept to a degree, Section 4.2. Therefore, the formula used to calculate
the dominance is:
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dominanceCi→Cj (pV ) =

∑
k∈Ep

i,j

µCi(entityk)∑
m∈Ei

µCi(entitym)
(2)

where Ep
i,j is a set of entities of Ci that are connected to entities from Cj via pV , while Ei is a

set of entities of Ci, while µCi() is defined by (1).
The second parameter contributing to the prominence of a property is called the completeness

of pV :

completenessCi→Cj (pV ) =
# Cj entities connected to Ci via pV

# Cj entities

This parameter indicates how many unique entities of the concept Cj are connected to the
entities of Ci, or in other words it shows ‘exclusiveness’ of Cj as a feature of Ci. Its value of
1.0 would mean that all entities of Cj are connected to entities of Ci; yet it does not mean
to all entities of Ci. The above formula represents a crisp situation, in reality we deal with
membership values of entities. The modified formula has the form:

completenessCi→Cj (pV ) =

∑
h∈Ep

j,i

µCj (entityh)∑
n∈Ej

µCj (entityn)
(3)

where Ep
j,i is a set of entities of Cj to which entities of Ci are connected via pV , and Ej is a set

of entities of Cj .

Finally, the prominence of a feature < ...− pV − Cj > is a product:

prominenceCi→Cj (pV ) = dominanceCi→Cj (pV ) ∗ completenessCi→Cj (pV )

prominenceCi→Cj (pV ) =

∑
k∈Ep

i,j ,h∈E
p
j,i

T (µCj (entityk), µCi(memberh))( ∑
m∈Ci

µCi(entitym)
)
∗
( ∑

n∈Cj

µCj (entityn)
) (4)

The low values of the prominence could be a result of the following situations:

(1) a number of entities of Ci is higher than of Cj ;
(2) a number of entities of Cj is higher than of Ci; and
(3) only some entities of Cj are connected with some entities of Ci.

These situations could indicate a limited amount of data used to construct a hierarchy, and
a need for more data should be considered. Further, the last one tells that the feature <
...− pV − Cj > exists only for a few entities of Ci and Cj . This case could lead to a conclusion
that this feature should be investigated at different levels of the hierarchy of concepts – possibly
at lower levels. These ideas alone, could guide a learning process and refinement of a constructed
structure of concepts.

In Fig.7, the feature < ...− pV −Cj > has the dominance of 6/7 and the completeness is 3/5.
This results in the overall prominence of 18/35 (0.514). For < ... − pV − Ck > the prominence
is 6/7 times 2/6 (0.286), and for < ...− pV − Cn > it is 6/7 times 1/4 (0.214).

The presented process of calculations can determine weights of features of the concept Ci.
An example of such situation is presented in Fig.8. This situation has to be considered in the
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Figure 7. Generalization process: single property pV .

context of hierarchy of concepts. The fact that the concepts of lower levels are contained in the
concepts of higher levels, and the entities of lower level concepts are also entities of higher level
concepts leads to a structure of features, Fig.9. We see that the prominence levels are calculated
starting at the lowest level of the hierarchy and finishing at the level where entities from ‘new’
concepts are not connected to Ci, i.e., the concepts Cx and Cy are not taken into account.
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Figure 8. Concept definition of Ci: an example.
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Figure 9. Simple hierarchy of concepts and associated values of prominence.

6. Case study

We apply the proposed method to construct definitions of concepts for a relatively large data
set. Almost 50k triples have been downloaded from dbpedia.org. The data contains entities from
the following categories: people, in particular musicians, actors/directors, writers and scientists;
selection of institutions – universities and commercial companies; geographical locations – cities
and countries, as well as some examples of human work – movies, games, plays and novels.

After building the similarity matrix we perform a clustering. The dendogram representing
the hierarchy of clusters/concepts is shown in Fig.10. As it can be seen a number of concepts
has been constructed. The figure includes name of some of them. As it has been indicated
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this has been done via processing of two properties of entities that belong to each concept:
dcterm:subject and rdf:type, Section 4.1. The generalization process enables us to look at
the concepts extracted from RDF data at different levels of granularity. An example of the
hierarchal structure could be the concept Persons that contains subconcepts Actor/Director,
Scientist and Musician to name just a few.

Figure 10. Dendogram of RDF data with indication of identified clusters of entities.

The proposed method not only provides concepts and entities that belong to them, but also
gives some insight into relationships between the concepts. We demonstrate this with a simple
example based on the obtained structure of concepts, Fig.10.

Let us ‘follow’ two entities moving up along the concept structure and see how the value
of prominence of one exemplary relation between the concepts, to which these entities belong,
changes. The two entities are Steven Spielberg, and California. We provide the paths marking
the sequences of concepts to which they belong – from very specific ones (at the most right hand
side of dendogram) to more abstract ones (at the left hand side of the figure): red for Steven
Spielberg, and blue for California. The relation, or should we say the feature, we investigate
is < ... − birthday − ... >. We use the term a source concept for concepts that contain Steven
Spielberg, and a target source for the concepts with California.

To illustrate changes in the values of prominence, we look at two scenarios: 1) we fix the
concept to which Steven Spielberg belongs and see how the prominence of birthday changes when
we ‘move’ our target concept towards more abstract one; and 2) the opposite scenario – we fix
the concept to which California belongs and consider more and more abstract source concepts
to which Steven Spielberg belongs.

The first scenario is illustrated with the light green arrows in Fig.11. It is important to point
out that as the concepts with California become more abstract the prominence value decreases.
This is a result of the diminishing value of completeness – there are more entities in the target
concepts when compared with the entities in the fixed source concept.

The second scenario is marked with the dark green, Fig.11. The prominence value shows
similar behaviour as before, but this time it is the consequence of the fact that concepts with
Steven Spielberg becomes more general. This time, we see a decrease in the dominance measure
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because more unconnected entities are included in the source concept. This results in the
diminishing value for the prominence value as expected, the dark green arrows.

Clint_Eastwood

Steven_Spielberg

Ben_Affleck

California

New_York

birthplace

prominence - 0.1111 

birthplace

prominence - 0.0098 

birthplace

prominence - 0.0417 

birthplace

prominence - 0.0247 

birthplace

prominence - 0.0162 

Figure 11. Changes in the prominence values of the relation birthplace.

In the final example, Fig.12, we focus on another relation – musicComposer. Yet, this time
we show the values of prominence between concepts at different levels of hierarchy. To illustrate
different granularity of the concepts and different importance of relations – as the consequence
of different context in which this importance has been calculated – we provide a bit more details
about relations (marked in orange in the figure) and concepts they connect, Table 2. It shows the
labels that indicate naming of concepts, we observe a process of inheritance of labels, together
with degrees of strength/importance of the relation musicComposer.

Table 2. Running example: naming and membership values for identified concepts.

subject property object

Film musicComposer (0.0130) Person
CreativeWork CausalAgent

Work PhysicalEntity
Movie

all above + musicComposer (0.6667) all above +
English-language Artist
American-movie Musician

Psychological feature Composer
Male-film-score
Academy-winner
Grammy-winner
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musicComposer

prominence - 0.6700             

          

                    

             

Figure 12. Generalization of concepts and relations.

7. Conclusion

One of the most interesting graph data formats is the Resource Description Framework (RDF).
It has been proposed as a part of Semantic Web initiative for representing data and information
on the web. Knowledge graphs are characterized by high connectivity – their nodes are linked
to each other via different types of relations.

In the paper, we take advantage of a relation-rich structure of knowledge graphs and propose
a methodology for constructing a structure of concept definitions. An important aspect of the
proposed method is the fact that it is a data-driven process. Once the available data is clustered
we analyze the data entities that are instances of the constructed definitions of concepts, and
relations between them. A thorough investigation of the relations allows us to determine the
degree to which they contribute to the definitions. This allows us to build concepts that are
equipped with impression as the consequence of an intrinsic lack of definite agreement what
constitutes a given concept, as well as the dependence of definitions on the context in which
they are built – available data in our case.

Our experiments indicate that the composition of concept definitions and membership of their
instances depend on the considered levels of abstraction. This means that the degrees to which
different relations contribute to the definitions are changing.

The next stage focuses on processes of gradual learning of categories based on data that are
being collected. The resulting hierarchy of concepts and their definitions can be updated via a
continuous inflow of new data.
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